
Meta-Data-Enabled Reuse of Dataflow Intellectual
Property for FPGAs

Adam Arnesen
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Dept. of Electrical and Computer Engineering
Brigham Young University

Provo, UT, 84602, USA
adamarnesen@byu.net

Abstract—This paper demonstrates the ability to reuse arbi-
trary IP as primitive cores in architectural synthesis algorithms
for FPGA by encapsulating these IP in meta-data. This meta-
data is represented as a set of extensions to the IP-XACT XML
specification and defines the high-level data types and the tempo-
ral behavior of IP. This paper describes how these extensions are
used in the Ogre synthesis system to facilitate automatic synthesis
of control and interface logic for homogeneous synchronous
dataflow (H-SDF) designs.

I. INTRODUCTION: HIGH-LEVEL SYNTHESIS

High level synthesis (HLS) is the process of automatically
creating digital circuits by from an abstract behavioral specifi-
cation of a digital system and finding a register-transfer level
(RTL) structure that realizes the behavioral specification [1].
These behavioral specifications can be done in a traditional
software language such as C and then translated into a high
performance hardware system [2], [3].

This work describes a method for using coarse grain intel-
lectual property (IP) as primitives in HLS. HLS algorithms
generally map behavioral specifications to small-sized low-
level primitives such as adders and multipliers. When more
coarse-grain IP have been used for synthesis, the set of pos-
sible IP was often limited to a small set of IP that was native
to the synthesis tool. This work demonstrates a technique
that allows any coarse-grain IP to be used in synthesis thus
allowing the set of operations for synthesis to include any
arbitrary IP from any source.

Arbitrary coarse grain IP can be used in HLS if additional
information is provided to the HLS tool about the IP. This
work encapsulates this information, or meta-data, by using the
IP-XACT standard and extensions describing the high-level
numerical datatypes and temporal behavior of the IP [4], [5],
[6]. High-level datatype information enables tools to assist a
designer in ensuring that datatypes are correctly manipulated
as data is transmitted between IP. Meta-data specifying the
temporal behavior of IP allows tools to automatically synthe-
size control circuitry to enforce the proper sequences of IP
operation and ensures that no data is lost in communication.

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 0801876. and by the Rocky Mountain NASA
Space Grant Consortium

This paper will discuss a design tool known as Ogre that
used datatype and temporal behavior specifications in meta-
data to enable the synthesis of dataflow systems. Ogre utilized
the Simulink GUI and model file to represent models of
systems composed of reusable IP as shown in Figure 1. These
models were translated into FPGA designs using the Ogre
design flow shown in Figure 2. This flow could reason about
high-level datatypes and temporal behavior and synthesize
control circuitry. The use of high-level datatypes in Ogre will
be discussed in Section II. Section III will discuss how Ogre
used meta-data to represent coarse-grain IP as actors in H-
SDF. Section IV will discuss how synthesis techniques were
applied to these coarse grain IP to create complete systems
and Section V will conclude.

Fig. 1. Simulink is used as a front end for design entry by the Ogre tool. IP
blocks described in IP-XACT XML are automatically included in a Simulink
library and can be dropped onto the simulink design pallet to create complete
designs.

II. NUMERICAL DATATYPES

The Ogre tool used high-level numerical datatypes to check
for valid data transfer between IP that have been connected in



Fig. 2. An overview of the Ogre System. There are four primary components: library representation, translation of schematic information to H-SDF graphs,
scheduling the H-SDF graph, and synthesizing control and interface circuitry to create a complete downloadable bitstream.

a design. Much of the IP that is used in data-flow designs for
FPGA operates on numerical data. Because of this, signals in
data-flow computations are also often meant to be interpreted
as some type of number such as an integer or a fractional
number represented as fixed or floating point. When compos-
ing data-flow designs and attempting to reuse IP, it is vital to
know the mapping of bits in a signal to the numerical data
being represented by this signal. If this mapping data is not
available, blindly tying cores together will almost certainly
result in incorrect data transmission. Ogre utilized the meta-
data descriptions developed as extensions to IP-XACT which
define a standard way of mapping high-level datatypes to their
underlying bit-vector implementations.

A. Representing Datatypes

The extension to IP-XACT that allows for the representation
of datatypes defines mappings between high-level datatypes
and the bits that implement those types on a particular signal.
There are two components to this representation: the definition
of the underlying bit-vector and the mapping of these bits to
a high-level type.

The bit-vector representation is contained in the meta-data
description of each port in XML. The port is defined by the
XML ‘‘vector’’ element with the width of the port being
defined as the left side of the vector minus the right side of
the vector (left− right).

The high-level type is defined separately from the descrip-
tion of the port. Each port points to the high-level type that
should be used to represent it allowing multiple ports to be
defined by the same type without the need to duplicate the
description of the type. An example of a high-level type

XML Code 1 This code snippet shows an example of a high-
level datatype extension. This example shows a signed fixed-
point type where two bits are used to represent the integer
part.
<spirit:component>
. . .
<spirit:vendorExtensions>
<chrec:highLevelDataTypes>

<chrec:portDataType>
<chrec:name>SFix_2_a</chrec:name>
<chrec:fixedPoint

chrec:sign="2sComplement">
<chrec:intBits chrec:resolve="static">
2

</chrec:intBits>
</chrec:fixedPoint>

</chrec:portDataType>
</chrec:highLevelDataTypes>
. . .

</spirit:vendorExtensions>
. . .
</spirit:component>

definition is shown in XML 1. This particular definition is for
a fixed-point datatype. It defines that the two most significant
bits should be interpreted as integer bits and the rest of the
bits of a signal should be interpreted as fractional bits. For
fixed-point datatypes it is also possible to specify the number
of fractional bits that should exist on a signal and assume
that the rest are integer bits. The extensions to IP-XACT for
datatypes and the details of their implementation are discussed
at length in [6] and [5].



B. Utilizing Numerical Types

The IP-XACT extensions developed in this research that de-
scribe high-level types were used in the Ogre design synthesis
system to assist designers in ensuring that datatypes matched
between IP. Ogre ensures first that bitwidths between IP match
and then checks the datatypes of these connections. If there is
a mismatch, Ogre alerts the user to the problem.

Fig. 3. Datatype-aware tools can use high-level datatype information to
synthesize conversion logic between incompatible datatypes and thereby
ensure correct data transmission.

Although the functionality of Ogre leveraged high-level
types only for checking of proper data connections, these
meta-data defined types provide the ability for a tool to
perform more sophisticated datatype synthesis. For example, a
tool could leverage the datatypes in meta-data to automatically
synthesize datatype conversions between IP when it detects
that there is a datatype mismatch. When a tool detects a mis-
match, a parameterized block of IP could be inserted between
the incompatible ports, making their datatypes compatible as
shown in Figure 3.

The high-level datatypes developed in this work are essential
for any tool that will automatically compose cores for data-
flow designs on FPGAs. If the high-level numerical datatypes
are not defined, there will most likely be corruption of data
as it moves between IP in a design. The meta-data high-level
types included in CHREC XML and in extensions to IP-XACT
provide the necessary mapping between the bits of an IP port
and the high-level type which that port’s data belongs to.

III. REPRESENTING COARSE-GRAINED IP AS H-SDF
ACTORS

In order to automatically compose arbitrary IP in a dataflow
system, a description of the timing behavior of the IP’s
interface is required. If temporal core behavior for IP can be
matched to a particular model of computation, tools will be
able to reason with these cores and automatically generate
control circuitry for designs. The meta-data proposed in this
work to describe timing behavior is based on the homogeneous
synchronous dataflow (H-SDF) model of computation [7]. This
section will briefly describe the H-SDF model and describe
how meta-data implemented as extensions to IP-XACT en-
abled cores to be mapped as H-SDF actors.

A. The H-SDF Model of Computation

The H-SDF model of computation defines the execution
semantics for a system based on the dataflow relationships
between portions of the system. H-SDF is represented by a
directed, vertex weighted, graph G = {V,E}. Each vertex
v ∈ V is called an H-SDF actor and each edge (x, y) ∈ E
represents the operation precedence between two actors.

The edges in E are used to enforce execution semantics on
the H-SDF graph. For example, the presence of edge (a, b) in
G means that all computation must be done in vertex a before
vertex b can start its computation. Computation in H-SDF is
done by the actors. When an an actor performs a computation,
it is said that the actor “fires.” The weight of the vertex v
represents the number of steps required for that particular actor
to fire.

In addition to simply defining edges between vertices, H-
SDF also uses the notion of tokens to enforce semantics.
Each edge in G can contain multiple tokens at any given
time. In order for any actor in H-SDF to “fire,” or perform
computations, it must have an input token on each of its inputs.
If there are no input edges to an actor, it may fire at any time.
When an actor “fires” it produces tokens on all of its output
edges.

Homogeneous synchronous dataflow is a subset of standard
synchronous dataflow (SDF) because when H-SDF actors
“fire” they consume only one token from their inputs and
produce one token on their outputs. In general SDF, actors
are allowed to consume and produce multiple tokens when
they fire(i.e., multi-rate dataflow). In this work H-SDF was
chosen as the model of computation because many single-
rate systems can be represented as actors that consume and
produce single tokens when they perform computations. H-
SDF was also chosen because it is easier to use than general
SDF.

Figure 4 shows an example of an H-SDF model and a valid
sequence of actors firing. Because actors A and B have no
inputs they can fire at any time. When they fire, they each
produce tokens on their output edges. Actor C is allowed to
fire once tokens produced by A and B are both present on its
inputs. When C fires, it also produces a single output token
which is consumed by actor D when it fires. Actor D’s firing
completes a valid computation from this H-SDF model.

The H-SDF model of computation also supports cyclic data
dependency graphs. However, when an H-SDF graph is cyclic,
care must be taken to correctly satisfy the initial conditions
for the computation. For each cycle in an H-SDF graph there
must be at least one token on an edge in that cycle. If there is
no token in the cycle, the computation will not be able to start
because no actor will have the needed inputs. Multiple tokens
may exist in the cycle or even on a single edge, but at least
one token must be in the cycle. An example of proper and
improper initialization of H-SDF graphs is shown in Figure 5.

The execution semantics of H-SDF allow a static schedule
to be computed for the graph. This schedule will be a repeating
schedule that defines the relative start times for each of the



(a) Actors A and B fire and produce tokens
on outgoing edges.

(b) Actor C fires consuming all input tokens
and producing an output token on outgoing
edges.

(c) Actor D fires and consumes all inputs.
Computation is now finished.

Fig. 4. The homogeneous synchronous dataflow model of computation allows
each node to “fire” when one token is available on each of its inputs. Each
firing produces one token on the node’s output.

actors. When using H-SDF to represent hardware systems, the
schedule can be mapped on to clock cycles for pipelined IP.

Because H-SDF enforces execution semantics on a dataflow
graph, it is useful in describing the execution of single-rate
dataflow systems for FPGAs. If each IP core in a system
can be interpreted as an actor using H-SDF semantics, then
the execution semantics of H-SDF can be used to determine
how the hardware system should execute by creating a static
schedule for the operation of IP in the system. This research
defines three meta-data elements that allow coarse-grain IP

(a) Invalid H-SDF initial conditions

(b) Valid H-SDF initial condition with
one initial token in the loop

(c) Valid H-SDF initial condition with
two tokens in the loop

Fig. 5. A cyclic H-SDF graph must have proper initial conditions. Each
cycle in the graph must start with at least one token already on an edge in
the cycle. The graph in figure 5(a) is invalid because it has no such initial
condition. Figure 5(b) shows the simple case of a valid initial condition with
one token initially in the loop. Multiple initial tokens are valid as shown in
Figure 5(c).

to be described in a way that allows them to be interpreted
as actors onto the H-SDF graph. This meta-data defines the
latency, the data introduction interval, and the sample delay
for IP.

B. Latency

The latency of an IP core is the number of clock cycles that
elapse from the time that data is consumed on the inputs of the
core to the time that the corresponding results are produced
on the outputs. This does not mean that the core is pipelined
in the traditional sense or that data can be accepted by the
core on every cycle. For example, cores that accept data only
every 8 cycles and take 9 cycles to compute a result would be
given a latency value of 9.

When mapping a IP core onto an H-SDF actor the latency
of IP is represented in H-SDF graph by the weight of an
actor. Because this weight defines the amount of time that
elapses while an actor is performing a computation, this weight
can interpreted as the number of latency clock cycles. This
information can be used by H-SDF scheduling algorithms to
to determine the time that data will appear on the output of



a core. The latency can also allow synthesis algorithms to
appropriately control IP downstream to wait until valid data
has been produced by the IP.

C. Data Introduction Interval

The data introduction interval for a core describes how many
clock cycles must elapse between the introduction of data
for each new sample. Cores with a data introduction interval
of one can accept new samples each clock cycle. The data
introduction interval of a core is independent of its latency.
For example a core that has a data introduction interval of 3
can consume data on clock cycle 0 but then will not consume
data again until clock cycle 3 and then again on cycle 6. This
same core may take 9 cycles to compute a result from a set
of inputs.

The data introduction interval imposes an additional con-
straint on the scheduling algorithms that generate control for
H-SDF execution. If tools are aware that a core can only accept
new data every n clock cycles, then any synthesized control
circuitry must ensure that data is given to a core only when it
is able to receive it.

D. Sample Delay

Sample delay is perhaps the most complected parameter
used to describe IP as H-SDF actors. The sample delay is
the number of cycle iterations separating an actor from the
downstream actors. In other words, the sample delay defines
how many cycle iterations later the data produced by an IP will
be needed for computation. Sample delay is important when
IP are going to be used in a cyclic manner. For example, in
the design shown in Figure 1 there is a cycle in the design.
The sample delay defines the break between iterations of the
cycle.

Sample delay can also be thought of as the number of initial
tokens in a cycle in an H-SDF graph. If we consider a design
to be represented as a H-SDF graph, we know that there must
be at least one initial token on an edge in the cycle in order
to enable this loop to execute properly according to H-SDF
semantics. It is this initial condition that the sample delay
represents.The sample delay parameter indicates the number
of H-SDF initial tokens existing on the outputs of a particular
IP.

Another way to conceptualize sample delay is that it repre-
sents the state generated by the previous iteration of the loop.
For example in Figure 5(b) the token that exists on the arc ~ba
represents the result of the computation done by the previous
execution sequence {a, c, b}.

This research chose to represent sample delay as a property
of a piece of IP. While the proper way of representing sample
delay in cyclic models is an open research question, there
are several advantages to representing it as a property of a
particular IP block. Representing sample delay as a property
of a block of IP is especially useful when IP cores are used in
situations that are closely related to their original design. When
the sample delay is a property of particular communications IP,
for example, these blocks need only be inserted in a cycle and

the sample delay of that cycle is automatically satisfied. This
type of representation is also logical when thinking of sample
delay simply as the state from the previous iteration of the
cycle. If the IP with the sample delay also has internal registers
to maintain state, these registers contain the result of all
upstream computation in the cycle. This type of representation,
however, is now without its weaknesses. It breaks down if a
core is used in a situation that is not similar to its original
use. This may cause the sample delay on the IP to be in an
incorrect location.

E. IP-XACT Extensions for H-SDF

The meta-data description elements needed to represent
coarse-grain IP as actors in H-SDF was implemented as a
set of XML elements called the ‘‘behavioral layer’’.
This set of elements was added to IP-XACT as a vendor
extension. XML 2 shows the definition of a temporal H-
SDF interface as it appears as an IP-XACT extension. This
particular interface has a data introduction interval of 7, a
pipeline depth of 8, and a sample delay of 0. This represen-
tation method allows sample delay to be represented as part
of the IP core and does not require the user to understand the
complex concept of sample delay.

The IP-XACT extensions representing H-SDF interfaces
enabled scheduling and synthesis algorithms to be applied to
IP that had this type of interface. These types of algorithms
allowed hardware to be automatically synthesized to control
the flow of data between the H-SDF cores.

IV. APPLYING H-SDF SYNTHESIS TECHNIQUES TO
COARSE-GRAIN IP

The description of coarse grain IP as actors in the homo-
geneous synchronous dataflow model of computation allows
traditional architectural synthesis algorithms to be used to
synthesize control logic for systems. Although the algorithms
used for this synthesis have been used before, the meta-data
presented in this work enables coarse-grain IP to be used as
primitives in these algorithms.

There are several assumptions made in Ogre about the
structural interfaces of the IP that will be used to create
designs. All IP must have a fixed latency and all inputs must
be consumed on the same clock cycle. The latency may be
parameterized, however, once a particular instance of the IP
exists the latency must be the same for every computation
done by that core. Ogre also assumes that each IP has two
control signals: clock-enable and data-valid. These
signals are used by synthesized control circuitry to properly
start and stop IP operation.

This section will describe the method used in the Ogre tool
to leverage meta-data to perform architectural synthesis. The
Ogre tool leverages the Mathworks’ Simulink tool as an input
method for data-flow designs as shown in Figure 1. Once
IP have been connected in the Simulink GUI, the Ogre tool
can parse the .mdl file and use the meta-data describing the
IP to perform synthesis of complete designs. An overview
of this synthesis flow is shown in Figure 2. Details of the



XML Code 2 Definition of temporal interface for H-SDF compliant cores.
<chrec:behavioralLayer>

<chrec:dataIntroductionInterval>
7

</chrec:dataIntroductionInterval>
<chrec:pipelineDepth>8</chrec:pipelineDepth>
<chrec:sampleDelay>1</chrec:sampleDelay>

</chrec:behavioralLayer>

synthesis flow will be described in this section. The method
of constructing an H-SDF dataflow dependency graph will
be presented as well as an overview of the iterative modulo
scheduling algorithm that was used as a first step toward
creating control circuitry. The method of converting schedules
to finite state machines will also be presented.

A. Translating Schematics to H-SDF Graphs

Before architectural synthesis algorithms could be applied
to systems composed of IP described in meta-data, the in-
terconnection of the IP were represented as an H-SDF graph.
This translation used the structural interconnection between IP
described in the Simulink GUI and the meta-data describing
each of the blocks to create the H-SDF graph.

An intermediate netlist data structure was used as part of the
translation that represented the connectivity of the complete
design. This netlist structure, shown in Figure 2 as the Ogre
Netlist, represented all of the data that was contained in
the extended IP-XACT meta-data. The netlist structure was
connected to a library of IP meta-data that it queried to
determine the structural interface of a core, its parameters, its
datatypes, and its temporal behavior. Each of these description
elements was encapsulated in an “instance” of each core in the
design. Each of these instances contained ports that could be
connected in the netlist structure to represent a full or partial
design.

The first step in translating a Simulink model file to an
H-SDF graph was to populate the Ogre netlist structure with
instances of the IP that were in the design and to connect
the data ports as represented in the model. Many of these IP
were parameterized, and the parameter values set in Simulink
were translated into the IP instance in the Ogre netlist. Once
parameter values were set, Ogre verified the correctness of the
provided parameter set by using the mathematical expressions
provided in the meta-data. Once these parameters were vali-
dated, mathematical expressions were used to properly set all
of the low-level parameters on each of the IP instances.

Datatype checking was a two-step process. First the
bitwidths were set to be compatible across the design. The
bitwidths set by the user on the input ports in Simulink were
used as a starting point to propagate the bitwidths throughout
the design. Many of the IP used had parameterizable bitwidths.
Because of this parameterization, making bitwidths compatible
was often a simple matter of setting the correct parameter
to match bitwidths. When parameters could not be set to
correctly resolve bitwidths, Ogre would report this to the
user who would have to resolve the conflict. While resolving

bitwidth values in the design, Ogre also checked for conflicting
high-level datatypes. Mismatches identified using the datatypes
defined in meta-data were also reported to the user.

(a) The initial translation of design to H-SDF
represents initial conditions (sample delay) as a
distance on the edge after the IP with the sample
delay. Node weights reflect the latency of IP.

(b) After scheduling, nodes are annotated with the start
time determined by the iterative modulo scheduling
algorithm.

Fig. 6. The 2 H-SDF graphs shown here represent the graph that is created
to represent the design shown in Figure 1. Before scheduling, only weights
and sample delay are present on nodes. Scheduling applies a start time to
each node.

Once the Ogre netlist was completely populated from the



Simulink description, an H-SDF graph was produced that
represented the temporal behavior of the computation system
defined in Simulink. For each of the instances of IP in the
netlist an H-SDF actor was created. The weight of this actor
was the latency of that particular IP. For each wire in the
netlist the corresponding edge was created in the H-SDF graph.
These edges were weighted according to the sample delay
description of their source actor. Because sample delay occurs
infrequently in blocks, the weight of most edges was 0. Input
and output ports were also represented as actors but their
weight was always 0. They were include only as a means
for determining consistent starting position for the scheduling
algorithm discussed in subsection IV-B.

An example of the result of this translation is shown in
Figure 6. This particular example shows the H-SDF graph
that results when the design shown in Figure 1 was translated
to H-SDF. Note the translation of the pipeline depth to the
latency or weight of each of the nodes. Also note that because
the “nco” has a sample delay value of 1 there is a weight of
1 applied to the edge from the “nco” to “CMult1.”

The translation from dataflow block diagram to H-SDF
graph was enabled by the Ogre netlist structure that was based
on meta-data contained in the extended IP-XACT specification
developed in this work. This meta-data allowed a simple H-
SDF graph to be created that represented coarse-grain IP from
a library to be represented as actors in H-SDF and allowed a
correct representation of the connections between them in the
data path of a design.

B. Applying Iterative Modulo Scheduling

The H-SDF model of computation defines its execution
semantics, but the implementation of these semantics must
be properly represented in hardware in order to produce a
working design. As a first step in translating the semantics of
H-SDF to hardware, Ogre applied a scheduling technique to
determine the relative start times of each of the IP in a design
based on a global clock signal. Ogre used an iterative modulo
scheduling (IMS) approach to this schedule as described in [8].

The IMS algorithm described in [8] was intended for general
scheduling of multi-cycle actors onto available processors.
Ogre simply needed to determine the clock cycle that data
would be ready for each IP to use to do computation. The
power of IMS for this use was that IMS computed a minimum
initiation interval (II) for cyclic H-SDF graphs. The initiation
interval was the number of clock cycles that must elapse
between times that the design was able to consume new
data. Minimizing the initiation interval was important because
lower initiation intervals corresponded to higher throughput
for cyclic data-flow designs. Because many of the designs
developed for this work were cyclic in nature, this was an
appropriate algorithm choice.

Many scheduling algorithms, when applied to cyclic H-SFD
graphs, did not allow for the minimum initiation interval. For
example, many algorithms required that a complete computa-
tion through the graph be complete before beginning a new
computation as shown in Figure 7(a). IMS allowed a schedule

(a) Most common scheduling algorithms require that a completed compu-
tation iteration be finished before beginning another. The II produced by
this type of scheduling generally does not produce the minimum II, in this
case the II=8

(b) The IMS schedule allows for iterations of a loop to overlap each other.
Each color represents the progression of a complete computation through
the H-SDF Graph. This produces a schedule with a II=4 which is much
better than the minimum possible for the H-SDF graph shown in 6(a)

(c) The kernel of the
IMS schedule rep-
resents the repeated
start times for IP in
a cycle.

Fig. 7. Scheduling possibilities for the design shown in Figure 1 and the H-
SDF graph shown in Figures 6(a). Scheduling algorithms determine the start
times for H-SDF actors. The iterative modulo scheduling algorithm defines
the start times for IP in a kernel that allows iterations of a cycle to overlap
and computes the minimum initial interval for an H-SDF graph.

to be created that overlaps different computational iterations as
shown in Figure 7(b). To produced this type of a schedule the
sample delay characteristic of IP was very important. Because
sample-delay in H-SDF represented initial values available to
an actor, IP that are downstream from a sample delay could
be scheduled before nodes that came before them in strict
dataflow. The schedule in Figure 7(b) is the generated schedule
for the H-SDF graph shown in Figure 6(a). Notice that in the
schedule in Figure 7(b) “CMult1” started before the “nco”
even though the dataflow edges in Figure 6(a) seem to require
that the “nco” run first.

The IMS algorithm computed a schedule “kernel” that
described the repetitive schedule that should be used to contin-
ually operate the H-SDF graph properly. An example of this
kernel is shown in Figure 7(c). The ability of sample delay
to allow IMS to fold long schedules into shorter schedules
allowed Ogre to compute the minimum II for a H-SDF
graph. This minimum II allowed for maximum throughput
on data-flow hardware designs. Once Ogre had completed
the scheduling process through IMS, the nodes of the H-



SDF graph were labeled with their start times as shown in
Figure 6(b). The schedule kernel produced by IMS allowed
control circuitry to be created to control the passage of data
through the hardware.

C. Control Synthesis

Once a schedule had been generated for the design, this
schedule could be used to generate control circuitry for the sys-
tem. The Ogre synthesis system used the schedule generated
by the IMS algorithm to create a finite state machine (FSM)
that controlled when each of the IP in the design was active.
By ensuring that IP are active only during their scheduled
times, this FSM was able to ensure that data moved between
IP during the correct clock cycle.

The FSM generated by the Ogre system assumes that
clock-enable and data-valid signals exist on the IP.
Which hardware ports on the IP correspond to these types
of signals was described in meta-data. The FSM controlled
the flow by properly manipulating the values on the clock
enable and data-valid signals. When the schedule indi-
cated that an IP should start, the FSM would raise the data-
valid signal for a single clock, signaling to the IP that it should
begin computation because there was real data on its inputs.
This data-valid signal often was connected to an enable
signal on the first bank of pipeline registers in the IP block. In
addition to starting the computation with the data-valid
signal, the FSM raised the clock-enable signal on the IP
for each of the clock cycles that the IP should be running as
determined by the length of the schedule time.

Ogre synthesized the FSM and other interface circuitry
in VHDL. When synthesizing the FSM, a VHDL file was
produced to implement the proper behavior. The FSM was
also added to the Ogre netlist structure as an instance of a
component. The FSM was connected to the proper signals
in the netlist based on the port names determined from the
meta-data. Once the FSM had been connected to the IP in the
system, global clock and reset signals were also added and
connected to IP as needed.

At this point, the Ogre netlist structure represented a com-
plete and correct hardware design. Synthesizable VHDL was
automatically created from the netlist structure. The data path
between IP was created and the control from the FSM was
connected in VHDL. This generated, top-level VHDL file
was then passed to a traditional synthesis flow to create a
downloadable bitstream.

V. CONCLUSION

Creation of the synthesis algorithms used in Ogre was pos-
sible because of the meta-data in IP-XACT with the extensions
describing datatypes and temporal behavior. Meta-data enabled
data-flow designs captured in Simulink to be translated into a
structural netlist in Ogre. This netlist and the meta-data was
then used to create an H-SDF graph that enabled the IMS
algorithm to produce a schedule that minimized the II for
the design. The IMS schedule was used to synthesize a finite
state machine that ensured that data moved through the design

correctly. This FSM was included in a top-level VHDL file
that could be synthesized to a bitstream and downloaded to
an FPGA.

Ogre demonstrates the ability of meta-data to enable tools
to increase design productivity by performing tasks that are
traditionally required of human designers when reusing IP. Us-
ing Ogre, a designer no longer has to manually create control
circuitry to ensure correct flow of data. The designer does
not have to worry about bitwidth and datatype correctness.
While Ogre may not be suitable for all types of designs, the
ability of Ogre to synthesize fully functional data-flow designs
shows that meta-data can enable tools that can increase design
productivity by performing complex architectural synthesis.

REFERENCES

[1] M. McFarland, A. Parker, and R. Camposano, “The high-level synthesis
of digital systems,” Proceedings of the IEEE, vol. 78, no. 2, pp. 301 –318,
Feb. 1990.

[2] J. Zhu, “Introduction to c-based high level synthesis,” in ASIC, 2009.
ASICON ’09. IEEE 8th International Conference on, October 2009, p. 15.

[3] A. Shatnawi, J. Ghanim, and M. O. Ahmad, “High level synthesis
of integrated heterogeneous pipelined processing elements for DSP
applications,” Comput. Electr. Eng., vol. 30, no. 8, pp. 543–562, 2004.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1651877&dl=
&coll=GUIDE&CFID=80171792&CFTOKEN=69326439

[4] IP-XACT Draft/D5: A specification for XML meta-data and tool inter-
faces, SPIRIT consortium, 1370 Trancas Street #184, Napa, CA, 94558,
May 2009.

[5] A. Arnesen, K. Ellsworth, D. Gibelyou, T. Haroldsen, J. Havican,
M. Padilla, B. Nelson, M. Rice, and M. Wirthlin, “Increasing Design Pro-
ductivity Through Core Reuse, Meta-Data Encapsulation, and Synthesis,”
in Proc. of 20th International Conference on Field-Programmable Logic
and Applications (FPL 2010), September 2010, pp. 538–543.

[6] A. Arnesen, “Increasing Design Productivity for FPGAs Through Intel-
lectual Property Reuse and Meta-Data Encapsulation,” Master’s thesis,
Brigham Young University, April 2011.

[7] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[8] B. R. Rau, “Iterative modulo scheduling,” The International Journal of
Parallel Processing, vol. 24, no. 1, February 1996.

http://portal.acm.org/citation.cfm?id=1651877&dl=&coll=GUIDE&CFID=80171792&CFTOKEN=69326439
http://portal.acm.org/citation.cfm?id=1651877&dl=&coll=GUIDE&CFID=80171792&CFTOKEN=69326439

	I Introduction: High-Level Synthesis
	II Numerical Datatypes
	II-A Representing Datatypes
	II-B Utilizing Numerical Types

	III Representing Coarse-Grained IP as H-SDF Actors
	III-A The H-SDF Model of Computation
	III-B Latency
	III-C Data Introduction Interval
	III-D Sample Delay
	III-E IP-XACT Extensions for H-SDF

	IV Applying H-SDF Synthesis Techniques to Coarse-Grain IP
	IV-A Translating Schematics to H-SDF Graphs
	IV-B Applying Iterative Modulo Scheduling
	IV-C Control Synthesis

	V Conclusion
	References

